Senate Building Decoration

Mikhail Pyaderkin

Two-player game. Given an array, the players repeatedly remove everything but a
subarray at least half the length, until only one element is left.

The first player wants to maximize the final number, while the second player wants to
minimize it.

2/6

Subtask: A is nondecreasing

Clearly, out of all subarrays of a given length L, the first player will want to choose the
rightmost one and the second player the leftmost one.

Also, it is never useful to give out a subarray that is longer than needed: the opponent is
always able to give back a new array that contains smaller numbers than if we gave them the

shortest array.

Thus, we can repeatedly cut off the left or right halves to find the last remaining position.

This can be easily implemented in n log n time.

3/6

Subtask: n < 250 (n*)

We can do dynamic programming with O(n?) states: for each subarray, remember what’s
the highest value you would get if player 1 started from that subarray, and the lowest value
if player 2 started from that subarray:.

In O(n?), for every state we can check the corresponding value for the other player for all
its subarrays, for a total cost of O(n*)

4/6

Subtask: n < 800 (n°)

We can still do the same dynamic programming solution, but we can compute the minimum/

maximum value for each length of subarray in O(n) with a Range Minimum Query
structure.

This gives a total cost of O(n?).

5/6

Full solution (n? log n)

Let’s binary search on the final value in the array. We now need to figure out whether the
final value is > or < of the target.

This is equivalent to solving the problem on a A array that is either 0 or 1.

To solve this special case, we just need to keep track of the number of Os (or 1s) answers
you can get to from a given configuration.

If we process sub-arrays in order of length, we can update these numbers when going from
length [to length [4 1 for all sub-arrays of that length in O(n).

This makes the total cost O(n?logn)

6/6

	Senate Building Decoration
	Setup
	Subtask: A is nondecreasing
	Subtask: n ≤ 250 (n4)
	Subtask: n ≤ 800 (n3)
	Full solution (n2 log n)

